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Summary

The CD40-CD154 pathway is important in the patho-

genesis of inflammatory bowel disease. Here we show
that injection of an agonistic CD40 mAb to T and B cell-

deficient mice was sufficient to induce a pathogenic
systemic and intestinal innate inflammatory response

that was functionally dependent on tumor necrosis
factor-a and interferon-g as well as interleukin-12 p40

and interleukin-23 p40 secretion. CD40-induced colitis,
but not wasting disease or serum proinflammatory

cytokine production, depended on interleukin-23 p19
secretion, whereas interleukin-12 p35 secretion con-

trolled wasting disease and serum cytokine produc-
tion but not mucosal immunopathology. Intestinal

inflammation was associated with IL-23 (p19) mRNA-
producing intestinal dendritic cells and IL-17A mRNA

within the intestine. Our experiments identified IL-23
as an effector cytokine within the innate intestinal im-

mune system. The differential role of IL-23 in local but
not systemic inflammation suggests that it may make

a more specific target for the treatment of IBD.

Introduction

The inflammatory bowel diseases (IBD) encompassing
Crohn’s disease (CD) and ulcerative colitis are chronic
inflammatory disorders of the gastrointestinal tract
that affect approximately 0.1% of Western populations
(Bouma and Strober, 2003; Shanahan, 2002). Available
evidence suggests that IBD involves an aberrant inflam-
matory response to intestinal bacteria in genetically
susceptible individuals. The immune pathogenesis of
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CD is associated with increased inflammatory cytokines
including tumor necrosis factor-a (TNF-a), interferon-g

(IFN-g), and interleukin-12 and interleukin-23 p40 (IL-
12p40, IL-23p40). Accordingly, anti-TNF-a therapy has
been shown to be beneficial in CD patients (Sandborn
and Faubion, 2004). However, a limitation of this ap-
proach is that TNF-a also plays a pivotal role in protec-
tion from infection. Indeed, sustained blockade of
TNF-a has been reported to increase susceptibility to
infection such as reactivation of Mycobacterium tuber-
culosis (Sandborn and Faubion, 2004). These findings
highlight the need to develop more specific strategies
that discriminate the local pathogenic inflammatory
response from systemic host protective immunity.

Interactions between CD40 and CD154 (CD40L) are
important in the initiation and maintenance of T cell-
mediated intestinal inflammation. In the inflamed intesti-
nal tissue of human IBD patients, as well as in mouse
models of IBD, CD40+ antigen-presenting cells (APC)
are found in association with CD40L+ T cells (Liu et al.,
1999, 2000; Polese et al., 2002). Importantly, blockade
of CD40-CD40L interactions inhibits the development
of colitis and can ameliorate established disease in
mouse models (Cong et al., 2000; De Jong et al., 2000;
Kelsall et al., 1996; Liu et al., 2000). These results suggest
that after antigen encounter, activated CD4+CD40L+

T cells stimulate CD40+ APC via the CD40L-CD40 path-
way. This in turn leads to further activation of APC and
T cells, establishing a positive feedback loop of immune
activation (Diehl et al., 2000; van Kooten and Bancher-
eau, 2000). In this type of inflammatory cascade, both
CD4+ T cells and APC can contribute to immunopathol-
ogy with effector mechanisms including cytokine pro-
duction (Strober et al., 2002).

CD40 stimulation of myeloid cells can lead to IL-12
production (Stuber et al., 1996). This cytokine plays
a key role in the inflammatory response primarily due
to its ability to induce IFN-g production by T cells and
NK cells (Trinchieri et al., 2003). In intestinal inflamma-
tion, administration of neutralizing IL-12p40 mAbs ame-
liorates colitis in several different models (Neurath et al.,
1996; Simpson et al., 1998). This therapeutic effect is
linked to reductions in IL-12-driven IFN-g secretion as
well as the induction of Fas-mediated apoptosis of Th1
cells (Fuss et al., 1999). In a recent study, anti-IL-12p40
treatment in CD led to an amelioration of inflammation
in some patients (Mannon et al., 2004). Clinical improve-
ment was associated with a reduction in the production
of IL-12 and IFN-g by mononuclear cells from the intes-
tine. However, it is now known that IL-12p40 forms heter-
odimers not only with IL-12p35 (IL-12p35p40; IL-12p70)
but also with IL-23p19 (IL-23p19p40). These results raise
the possibility that activities previously ascribed to IL-12
may in fact be attributable to IL-23. Indeed, the immune
pathological response in experimental autoimmune
encephalomyelitis (Cua et al., 2003) and collagen-
induced arthritis (Murphy et al., 2003) has been shown
to be functionally dependent on IL-23 and not IL-12.

To assess the role of CD40-mediated effector func-
tion in the innate response and to further probe the
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role of IL-12 and IL-23 in this pathway, we injected T and
B cell-deficient mice with an agonistic CD40 mAb. Anti-
CD40 stimulation led to a systemic and local inflamma-
tory disease characterised by wasting disease, spleno-
megaly, increases in serum inflammatory cytokines,
and colitis. Functional analysis showed that the sys-
temic inflammatory response was driven by IL-12 and
not IL-23, whereas local intestinal inflammation required
the presence of IL-23 and was independent of IL-12.
These results newly identify IL-23 as a key effector cyto-
kine within the innate intestinal immune system and
point to divergent roles for IL-12 and IL-23 in local and
systemic inflammation.

Results

Anti-CD40 Induces Wasting Disease and Colitis
in T Cell-Deficient Mice

To assess the effects of CD40 stimulation on the activa-
tion of the innate immune system, we injected immuno-
deficient recombinase-activating gene 1-deficient (Rag1
KO) mice with 200 mg CD40 mAb. Clinically, the mice de-
veloped wasting disease as well as gastrointestinal
symptoms including diarrhea and anal inflammation.
CD40 mAb-treated Rag1 KO mice developed rapid
weight loss, up to 20% within the first 4 days (Figure 1A).
7 days after antibody challenge, the weight was still sub-
stantially decreased compared to isotype- or PBS-
treated control mice. At this time, all CD40 mAb-treated
mice developed splenomegaly. Other pathological
changes in these mice included hepatopathy, lympha-
denomegaly of the mesenteric lymph node (MLN), and
colon pathology, as indicated by swelling of the colon
wall and presence of edema. 10 days after CD40 stimu-
lation, the mice recovered clinically but still showed
macroscopical signs of colon pathology, whereas 3
weeks after the initiation of the immune response, no
pathology was observed (data not shown). None of
these changes were seen when two different isotype
control antibodies or PBS injections were used. C.B-17
SCID mice developed similar pathology after anti-
CD40 stimulation (data not shown).

Consistent with macroscopic observations, 7 days
after CD40 mAb challenge, mice had histological signs
of colitis with pronounced epithelial hyperplasia and
marked leukocyte infiltration within the lamina propria,
goblet cell depletion, and epithelial cell destruction
(Figures 1B and 1C and Figures S1A–S1C in the Supple-
mental Data available with this article online). 10 days
after CD40 activation, there was still marked leucocytic
infiltration, but by 3 weeks after CD40 stimulation, all
histological changes had resolved (data not shown).

In summary, our results indicate that CD40 mAb
treatment in immunodeficient mice induces weight
loss and intestinal pathology.

Innate Immune Activation after Anti-CD40

Stimulation In Vivo
In line with the pathological and histopathological
observations, marked increases in total leukocytes
were found in the spleen and locally in the colon in
anti-CD40-treated mice (Figure S1C). CD40 is abun-
dantly expressed on CD11chi dendritic cells (DCs) of
SCID or Rag1 KO mice (Figure 2A), and these cells
became activated with increases in MHC-II, CD80, and
CD86 expression at early time points after anti-CD40
stimulation (Figure 2A). There was also a marked in-
crease in the density of CD11chi DC in leucocytic clus-
ters in the colon (Figure 2B).

Changes in serum cytokines and chemokines were
analyzed to determine whether these correlate with the
development of anti-CD40-induced disease. Serum
was assayed at day 3, when the anti-CD40-stimulated
mice had their maximum weight loss and the first signs
of colon pathology, as well as at day 7, when intestinal
pathology peaked. Increased amounts of TNF-a, IL-6,
IFN-g, MCP-1, and IL-12p70 were found in CD40 mAb-
treated mice. There was no significant change in IL-10
(Figure 2C).

Anti-CD40 treatment induced comparable local and
systemic immune pathology in germ-free and specific
pathogen-free (SPF) housed animals, suggesting that
the CD40-mediated activation pathway is not depen-
dent on the preactivation of the innate immune system
by replicating resident bacteria (Supplemental Data
and Figure S2).

Anti-CD40-Induced Immune Pathology Depends

on Cytokine Secretion
To test whether proinflammatory cytokines played
a functional role in the development of the anti-CD40-
mediated immunopathology, Rag1 KO mice were coin-
jected with CD40 mAb together with anti-TNF-a, anti-
IL-12 and IL-23 p40 (anti-p40), or anti-IFN-g. Anti-p40
had the most marked effect, leading to inhibition of wast-
ing disease, increases in serum cytokines, and colon
immune pathology (Figures 3 and 4). Anti-TNF-a and
anti-IFN-g also significantly inhibited wasting, although
neither afforded complete protection from increases in
serum cytokine levels or colitis (Figure 3). Together the
data indicate that proinflammatory cytokines play a
key role in anti-CD40-induced systemic and intestinal
immune pathology.

Differential Roles for IL-12 and IL-23 in Systemic

and Gut Immunopathology
Anti-IL-12p40 neutralizes the activity not only of IL-12
(p35p40) but also IL-23, which is composed of a hetero-
dimer of p40 with p19 (Trinchieri et al., 2003). To unravel
the role of IL-23 in this system, immunodeficient mice
were coinjected with anti-CD40 together with neutraliz-
ing anti-IL-12 and -23p40 (anti-p40), anti-IL-23p19
(anti-p19), or an isotype control antibody. Anti-p40
inhibited systemic immune activation as well as local
colonic pathology (Figure 4). In contrast, anti-CD40
and anti-p19 coinjected mice developed wasting dis-
ease (Figure 4A) and showed serum amounts of the
inflammatory mediators MCP-1, IL-6, and TNF-a that
were similar to anti-CD40-treated controls (Figure 4B).
Strikingly, anti-IL-23p19-treated mice did not develop
signs of intestinal inflammation (Figure 4C). These ex-
periments suggest differential roles for IL-12 and IL-23
in systemic and mucosal innate immunopathology.

To further investigate this, we crossed mice that are
deficient for IL-12p35 or IL-23p19 as well as IL-12 and
IL-23p40 onto a Rag1-deficient background (Rag1 p35
DKO, Rag1 p19 DKO, Rag1 p40 DKO). These double
knockout mice were injected with anti-CD40. Rag1 p40
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Figure 1. Anti-CD40 Stimulation Induces Wasting Disease and Intestinal Inflammation

Rag1 KO mice received 200 mg CD40 mAb i.p. Control mice received isotype control antibodies or PBS.

(A) Weight as a percentage of the initial weight at day 0. Data represent the mean weight 6 1 SD and is pooled from R5 independent experiments

(n = 19–35 mice per group).

(B) H&E staining of proximal and intermediate colon. Epithelial hyperplasia (H), epithelial cell damage (ED), leucocytic cell clusters (LC) in the

lamina propria, and a depletion of goblet cells (GCD) were found after CD40 stimulation. Original magnification 2003. Histology is representative

for >20 mice per group.

(C) Colitis score. Data represent the mean 6 1 SD of six mice per group.
DKO mice were protected from anti-CD40-induced
wasting disease and splenomegaly, had reduced serum
cytokine concentrations, and were protected from intes-
tinal pathology (Figures 5A–5D). Rag1 p35 DKO did not
develop wasting disease after anti-CD40 stimulation,
but intestinal inflammation was present (Figures 5A
and 5D). In these mice, reduced splenomegaly was de-
tected, and significantly reduced serum TNF-a was
found compared to anti-CD40-treated Rag1 KO mice
(Figures 5B and 5C). In contrast, anti-CD40-treated
Rag1 p19 DKO mice developed wasting disease,
splenomegaly, and elevated serum cytokine amounts
(Figures 5A–5C). Despite this systemic immune activa-
tion, these mice were protected from intestinal pathol-
ogy (Figure 5D). To test whether the activity of IL-12
and IL-23 involves the modulation of the intestinal
cytokine response, we determined proinflammatory
cytokine concentrations within the intestine in the anti-
CD40-treated mice. Compared to control mice, anti-
CD40-treated mice had increased amounts of colonic
TNF-a, MCP-1, and IL-6 (Figure 5E). Similar or greater
increases were also present in Rag1 p35 DKO mice,
which is in line with the presence of colitis in these
mice. In contrast and again consistent with disease
score, elevations in inflammatory cytokines were abro-
gated in anti-CD40-treated Rag1 p40 DKO and Rag1
p19 DKO mice (Figure 5E).

In summary, our experiments demonstrate that CD40
stimulation initiates a complex innate immune cascade
that drives the development of systemic and local gut
immune pathology. In this model, we find that the inflam-
matory cytokines TNF-a and IL-12 are preferentially
linked to the systemic innate immune response,
whereas the activity of IL-23 is linked primarily to the in-
testinal inflammatory response with little functional role
in systemic immune activation.

Differential Expression of IL-12 versus IL-23
in Spleen and Colon

To determine whether IL-23 and IL-12 are produced in
the intestine, we analyzed the expression of IL-23 p19,
IL-12 p35, and IL-12 p40 mRNA in colon and spleen
at D7 after CD40 mAb injection via real-time reverse-
transcription polymerase chain reaction (RT-PCR). Rel-
ative to untreated control spleen or colon, there was
an increase in both IL-23 p19 and IL-12 p35 subunits in
both compartments after anti-CD40 stimulation (Fig-
ure 6A). We did not observe an increase in IL-12 p40
subunit, because p40 mRNA was expressed at a high
amount prior to injection (data not shown). Consistent
with the mRNA expression data, increased concentra-
tions of IL-23 protein were detected in the culture super-
natants of colon from anti-CD40-treated mice compared
to controls (Figure 6B).

Anti-CD40 stimulation led to myeloid cell activation
and accumulation, so we next investigated whether
these cells are a potential source of IL-23. CD11chi

(DC) and CD11b+CD11c2 (monocytic) cells were iso-
lated by FACS sorting from spleen and colon 7 days after
anti-CD40 stimulation, and IL-23 p19, IL-12 and IL-23
p40, and IL-12 p35 gene expression was determined
by real-time RT-PCR. Relative to HPRT, the highest
amount of anti-CD40-induced IL-23 p19 mRNA was
found among colonic DC (Figure S3). These cells ex-
pressed a striking 568-fold increase compared to rest-
ing splenic DC and 69-fold higher amount than activated
splenic DC (Figure S3). This is likely to reflect functional
IL-23, because both splenic and colonic DC populations
expressed high amounts of IL-12 and IL-23 p40 (Fig-
ure S3). Colonic monocytes may also contribute to local
IL-23 production, as indicated by the fact that they too
expressed high amounts of IL-23 p19 mRNA (Figure S3).
As expected, there was also an increase in IL-12 p35, rel-
ative to amounts in resting splenic populations, among
DC and monocyte or macrophages isolated from the
spleen and colon of anti-CD40-treated mice. The IL-12
p35 increase was largest among colonic monocyte or
macrophages (106-fold higher). It is worth noting, how-
ever, that for activated colonic DC, the increase in IL-12
p35 (7-fold) was substantially lower than the increase in
IL-23 p19 (568-fold). Together, the data suggest that
anti-CD40 stimulation induces IL-23 expression by both
DC and monocyte or macrophage populations and that
for the former this is most pronounced in the colon.

Immune pathological responses associated with
IL-23 are thought to involve promotion of IL-17-produc-
ing T cells (Hunter, 2005; McKenzie et al., 2005). To de-
termine whether IL-23-mediated innate inflammation
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Figure 2. Immune Activation after Anti-CD40 Stimulation

Rag1 KO mice received 200 mg CD40 mAb i.p. or isotype antibody.

(A) Left: Dot plot of FACS staining for CD11c and isotype as well as CD11c and CD40 of mesenteric lymph node cells (MLN) of untreated SCID

mice. Right: Rag1 KO MLN cells were isolated at day 3 after CD40 mAb and isotype treatment, pooled from six mice per group, and analyzed for

CD40, CD80, CD86, and MHC-II on CD11c+ gated cells. Histogram plots show activation markers of Rag1 KO mice after CD40 mAb (bold line) or

isotype treatment (dotted line). Isotype control for the respective activation marker is shown for anti-CD40-treated mice (filled area). Isotype

control-treated mice expressed a similar isotype staining as the CD40 mAb-treated mice (not shown). Numbers indicate the percentage of cells

that are positive for the respective activation marker (Isotype; Anti-CD40). Similar results were obtained when spleen cells were analyzed.

(B) CD40 mAb treatment results in the accumulation of CD11c+ cells in the colonic lamina propria of Rag1 KO mice. Large clusters of CD11c+ cells

are present in the proximal colon of anti-CD40-treated mice. The scattered distribution of CD11c+ cells present in isotype control-treated mice is

shown for comparison. Histological pictures are representative of n R 4 mice per group. Original magnification 2003. Isotype control gave

no staining.

(C) CD40 mAb treatment leads to increased serum amounts of IL-6, MCP-1, IFN-g, IL-12p70, and TNF-a. Serum cytokines concentrations were

analyzed 3 and 7 days after injection. Data represent mean 6 SD. Data points lower than standard curve data were set as 1 pg/ml. Significance

was tested by the Mann and Whitney U test. Data from two independent experiments were pooled (n = 3–7 mice per group). A further independent

experiment gave a similar result.
is also linked to increased IL-17 production, we exam-
ined the expression of IL-17 mRNA (now termed
IL-17A) in colon and spleen of Rag1 KO mice after
CD40 mAb injection. As shown in Figure 6C, compared
to colons from unstimulated mice, there was a 65-fold
increase in IL-17 transcripts after anti-CD40 stimulation.
However, no such increase was observed in the spleen.
As with other inflammatory cytokines, increases in
colonic IL-17 mRNA were dependent on IL-23 and not
IL-12 (Figure 6D). These results indicate that anti-CD40
stimulation induces IL-17 mRNA production by non-T
cells and that this response is localized to the colon.

Discussion

The IBDs are of complex multifactorial pathogene-
sis and involve the activation of the innate and adap-
tive immune system. Animal models have suggested
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Figure 3. Anti-CD40-Induced Immunopathology Depends Functionally on TNF-a, IL-12 and IL-23p40 as well as IFN-g

Rag1 KO mice recieved 200 mg CD40 mAb i.p. or isotype antibody. In some groups, anti-IL-12/23p40 (500 mg), anti-TNF-a (1 mg), or anti-IFN-g

(1–2 3 2 mg) were coadministered together with anti-CD40 and analyzed for weight, serum cytokine concentration, and development of colitis.

Data represent mean 6 SD. Significance was tested by the Mann and Whitney U test.

(A) Weight as a percentage of the initial weight. Data from R2 experiments were pooled.

(B) TNF-a, IL-6, and MCP-1 serum concentration at day 7 (n = 3 per group).

(C) Colitis score (n = 7–15 mice per group).
T cell-dependent and -independent mechanisms of in-
testinal inflammation (Strober et al., 2002). In IBD, there
is evidence that alterations in the innate immune re-
sponse contribute to disease development because
mutations in the NOD2 gene, which lead to abnormal
function of this innate pathogen recognition receptor,
confer susceptibility to CD in some patients (Eckmann
and Karin, 2005). In IBD patients as well as in many model
situations, the CD40L-CD40 pathway plays an important
role in the crosstalk between the innate and adaptive
immune response. We therefore developed a model
where CD40L-expressing activated T cells were replaced
with an agonist CD40 mAb and demonstrate that CD40-
mediated effector function, in the absence of further
T cell help, is sufficient to induce a pathogenic systemic
and local inflammatory response. Anti-CD40-induced
disease is accompanied by accumulation of myeloid cells
including activated cytokine-producing DC in spleen and
colon. Production of the inflammatory cytokine IL-12 and
IL-23p40 subunit plays a pivotal role in the pathogenesis
of systemic and mucosal disease. To date, the functions
of IL-23 have only been described in models that involve
T cells (Cua et al., 2003; Murphy et al., 2003). However,
our data reveal distinct roles for IL-12 and IL-23 within
the innate immune system. Thus, IL-12 is a key molecule
for systemic immune activationwhereas IL-23 drives local
intestinal inflammation.

With our model of innate immune activation, we show
that a number of proinflammatory cytokines are associ-
ated with weight loss and colon pathology. Inhibition of
TNF-a and IFN-g had some protective effect on the
systemic immune pathology and colitis, but only block-
ade of the p40 subunit of IL-12 and IL-23 completely pre-
vented wasting and colitis. These results suggest that
IL-12 and IL-23p40 is a key factor within the proinflam-
matory cytokine cascade. There is considerable evi-
dence that early expression of IL-12 and/or IL-23 directs
a variety of downstream effectors of inflammation (for
reviews, see Hunter, 2005; Langrish et al., 2004;
Trinchieri et al., 2003; McKenzie et al., 2005). Thus, it is
likely that the inflammatory cascade induced by CD40 li-
gation triggers the production of IL-12 and/or IL-23,
which induces the release of other proinflammatory
cytokines such as TNF-a, IFN-g, and IL-6 by DC and
macrophages as well as IFN-g by NK cells (Ma, 2001;
Mason et al., 2002). Indeed, we found that myeloid
cells, in particular CD40-expressing CD80+CD86+MHC-
II+CD11c+ DC become activated after anti-CD40 stimu-
lation and that IL-12 and IL-23 mRNA-producing mono-
cytic cells and DCs accumulate within the colon and
spleen. The presence of IFN-g acts synergistically with
CD40 stimulation (Cua et al., 2003; Isler et al., 1999),
making it likely that, after anti-CD40 stimulation, signifi-
cant synergistic interactions between different cyto-
kines and cell types contribute to immunopathology.

Our dissection of the role of IL-23 and IL-12 in anti-
CD40-induced pathology revealed a surprising distinc-
tion in the regulation of systemic and tissue-specific
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Figure 4. CD40-Induced Intestinal Immunopathology Depends Functionally on IL-23p19

Rag1 KO mice were either left untreated or injected with 125 mg of anti-CD40. In some groups, IL-12 and IL-23p40 (anti-p40; 500 mg), IL-23p19

(anti-p19, 1 mg), or isotype control (1 mg) mAbs were coinjected together with anti-CD40 at day 0 and 3 and analyzed for weight, serum cytokine

concentration, and development of colitis. Data are representative of three independent experiments. Mean value is shown 6 SD, and signifi-

cance was tested by the Mann and Whitney U test.

(A) Weight as a percentage of the initial weight (n = 7 per group); *untreated versus isotype control p < 0.001 and isotype control versus anti-p19

p < 0.001.

(B) TNF-a, IL-6, and MCP-1 serum concentration at day 3 (n = 7 per group). ND, not determined.

(C) H&E staining of proximal colon at day 7. Anti-CD40-mediated pathology including epithelial hyperplasia, lamina propria infiltration, and

a reduction of goblet cells was completely inhibited by blocking with anti-p40 or anti-p19. Colitis score (n = 4–7 mice per group).
inflammation. Where IL-23 was essential for local innate
inflammation in the colon, it played no role in systemic
inflammatory changes such as weight loss, splenomeg-
aly, and elevated serum cytokines. On the other hand,
animals with specific IL-12 deficiency (p35 KO) still de-
veloped colitis but were protected from acute systemic
inflammation, including rises in serum proinflammatory
cytokines, indicating that IL-12 is not required for innate
mucosal pathology but is required for systemic re-
sponses induced by anti-CD40 treatment. These results
suggest that IL-12 and IL-23 define an axis of innate
regulation that differentially governs systemic and local
inflammatory responses.

Precisely how IL-12 controls the systemic inflamma-
tory response has not been investigated here. However,
it seems likely that anti-CD40-induced myeloid cell
activation is dependent on an autocrine activation loop
driven by IL-12. Thus, after CD40 ligation, myeloid cells
produce a burst of inflammatory cytokines including
IL-12, which leads to IFN-g production by NK cells and
other cells. This in turn can feed back to induce further
myeloid cell activation, resulting in increased IL-12 as
well as proinflammatory TNF-a, MCP-1, and IL-6.
In mice with anti-CD40-induced colitis, there was
a marked increase in IL-23p19 mRNA produced by
CD11chi DCs, indicating that these cells not only are in-
volved in the initiation of the IL-23-mediated cascade
but also contribute to IL-23 production under pathogenic
conditions. Consistent with these results, increased
IL-23 production by mouse DC has been reported after
in vitro anti-CD40 stimulation (Krajina et al., 2003; Morelli
et al., 2001). Furthermore, the production of IL-23 but not
IL-12 has been found in CD11c+ cells of the terminal
ileum as a consequence of bacterial stimulation (Becker
et al., 2003). The ability of anti-IL-23p19 to inhibit local
but not systemic immune responses suggests that
IL-23 may be an important mediator of tissue inflamma-
tion where it may amplify the inflammatory response via
effects on activated macrophages or dendritic cells
(Cua et al., 2003). Indeed, not only the production of
IL-23 but also expression of the IL-23 receptor and func-
tional stimulation via IL-23 have been shown in murine
and human dendritic cells and macrophages (Krajina
et al., 2003; Morelli et al., 2001; Oppmann et al., 2000;
Parham et al., 2002), which supports the basis of an au-
tocrine mode of amplification within the innate immune
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Figure 5. Differential Role of IL-12 and IL-23 in Systemic and Mucosal Innate Immunity

Rag1 KO mice as well as double knockout mice (Rag1 p40 DKO, Rag1 p35 DKO, and Rag1 p19 DKO) were injected with 125 mg anti-CD40. Data

are representative of three independent experiments. Mean value is shown 6 SD.

(A) Weight as a percentage of the initial weight (n = 6 per group).

(B) Spleen weight at day 7 (n = 6 per group).

(C) TNF-a, IL-6, and MCP-1 serum concentration at day 3 (n = 6 per group).

(D) H&E staining of proximal colon at day 7. Anti-CD40-mediated pathology including epithelial hyperplasia, lamina propria infiltration,

and a reduction of goblet cells was completely prevented in Rag1 p40 DKO and Rag1 p19 DKO but not Rag1 p35 DKO mice. Colitis score

(n = 4–5 per group).

(E) Cytokine concentrations in colon homogenates at day 7 were measured by CBA and normalized to total protein content for each sample.

Results represent mean cytokine levels from two experiments (n = 6–9 mice per group).
system. Thus, IL-23 production is likely to be a primary
step in the mucosal inflammatory autocrine cascade
that drives local expression of proinflammatory media-
tors. In support of this, there was increased production
of IL-23 in the colon compared to the spleen after anti-
CD40 stimulation, and increases in colonic inflammatory
cytokines such as TNF-a and IL-6 were dependent on
IL-23. However, since IL-23 production in our model is
not restricted to myeloid cells within the colon, it seems
unlikely that the tissue-specific activity of IL-23 is solely
a consequence of increased IL-23 production.
Investigation of IL-23-mediated effects within differ-
ent T cell-dependent models has revealed that IL-23
promotes the development of autoreactive T cells that
mediate destruction via release of the proinflammatory
cytokines IL-17, IL-6, and TNF-a (Langrish et al., 2005).
On the basis of their unique development and function,
these IL-17-producing T cells have been grouped into
their own lineage, now termed Th17 (Harrington et al.,
2005; Langrish et al., 2005; Park et al., 2005; McKenzie
et al., 2005). Through neutralizing antibody and gene
ablation studies, we now show that IL-23 is the key driver
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Figure 6. Induction of IL-23 and IL-17 after

Stimulation with Anti-CD40 In Vivo

Rag1 KO mice were injected with anti-CD40

i.p. At day 7, spleen and colon homogenate

mRNA were assayed via real-time RT-PCR.

Mean 6 SD are presented.

(A) Induction of IL-23 p19 mRNA expression

in the colon. IL-23 p19, IL-12 p35, and IL-12

and IL-23 p40 mRNA expression was deter-

mined in isotype or anti-CD40-treated mice

at day 7 (n = 2–6 per group). Data are normal-

ized for HPRT mRNA content and expressed

as fold change over untreated spleen or over

untreated colon.

(B) Induction of IL-23 protein (IL-23p19p40) in

colon after anti-CD40 stimulation. Spleen and

colon pieces from anti-CD40 and control mice

were cultured for 24 hr. IL-23 protein in the

supernatant was measured by ELISA (n = 4–5

per group). Significance was tested by the

Mann and Whitney U test. *not detectable.

(C) Expression of IL-17-A mRNA is induced in colon after anti-CD40 stimulation (n = 6 per group). Data are normalized for HPRT mRNA content and

plotted as fold change over untreated spleen or over untreated colon. Data represent the mean 6 SD and are pooled from two experiments.

(D) Expression of IL-17-A mRNA induced after anti-CD40 stimulation depends on IL-23.

Rag1 KO,Rag1 p40DKO, Rag1 p35DKO,and Rag1 p19 DKOmice were injected with 200 mg anti-CD40 (n= 4–6mice pergroup). Expression of IL-17-

A mRNA was assayed in colon via real-time RT-PCR. Data are normalized for HPRT mRNA content and plotted as fold change over untreated colon.
of T cell-independent mucosal inflammation. Thus, in
this setting, IL-23 promotes tissue destruction that is
not mediated via induction of IL-17-producing T cells.
However, somewhat unexpectedly we found that anti-
CD40 stimulation in Rag1 KO mice led to an increase in
IL-17 mRNA expression, indicating T cell-independent
sources of IL-17. Strikingly, IL-17 induction was evident
in the colon but not the spleen, providing a potential
mechanism for our findings that IL-23 drives intestinal
but not systemic immune pathology. Like other inflam-
matory cytokines, induction of IL-17 mRNA in the colon
was dependent on IL-23 and not IL-12. Further experi-
ments are required to identify the innate source of
IL-17 and to test its functional role. In addition to effects
on IL-17, we have previously shown that IL-23 syner-
gises with anti-CD40 to induce TNF-a, IL-1b, and IFN-g
production by macrophages (Cua et al., 2003), suggest-
ing that IL-23-mediated macrophage/myeloid cell acti-
vation may also contribute to intestinal pathology.

In conclusion, the experiments presented here sup-
port a role for the innate immune system as a potent
effector arm involved in intestinal tissue pathology. We
uncover a striking dichotomy in the regulation of sys-
temic and local inflammation, where IL-12 promotes
innate systemic responses and IL-23 directs local in-
flammation. These experiments raise the possibility
that some of the therapeutic effects of anti-IL-12/23p40
mAbs in colitis models (Neurath et al., 1995; Schmidt
et al., 2002) and in CD (Mannon et al., 2004) may be
mediated via effects on IL-23. Our results suggest that
IL-23 and activated IL-23-secreting DC/myeloid cells
may be effective targets for therapeutic strategies in
tissue-specific inflammatory conditions such as IBD.
Blocking IL-23 may inhibit not only maintenance of
pathogenic Th17 responses but also local myeloid ef-
fector cell responses. Importantly, our results suggest
that targeting IL-23 may be effective for the treatment
of tissue-restricted inflammatory conditions such as
IBD while maintaining the ability to mount protective im-
mune responses.
Experimental Procedures

Mice

CB-17 SCID (SCID), C57BL/6 recombinase-activating gene 1-defi-

cient (Rag1 KO), and double deficient for recombinase-activating

gene 1 as well as IL-12 or IL-23 or IL-12 and IL-23 (Rag1 p35 DKO,

Rag1 p19 DKO, Rag1 p40 DKO) mice were bred under specific path-

ogen-free conditions and kept in microisolators with filtered air at

the Pathology Support Building of the Sir William Dunn School of

Pathology (Oxford, UK) and the DNAX Research Institute (Palo

Alto, CA). Sentinel animals from the SCID and Rag1 KO mouse col-

onies were tested to be free from the intestinal pathogens Helico-

bacter spp. and Citrobacter rodentium. Mice were used at 7–12

week of age. Experiments were performed according to the UK

Scientific Procedures Act 1986.

In Vivo Antibody Treatment

Mice were injected i.p. with the anti-CD40, IgG2a monoclonal anti-

body FGK45 (Rolink et al., 1996). FGK45 was purified from hybridoma

supernatant via affinity chromatography. If not stated differently, 200

mg FGK45 in PBS was used. Isotype control rat IgG2a k R35-95 (BD

Pharmingen) or IgG2a GL117 (Ferlin et al., 1996) as well as PBS injec-

tions were used in age- and sex-matched control mice. No differ-

ences were observed between isotype control and PBS-treated

animals (n > 10 for each group). After antibody injection, mice were

observed daily and—if not otherwise stated—sacrificed after 7 days

or when they were moribund or had lost up to 20% of their initial

weight.

To interfere with specific cytokine activities in vivo, mice received

1 mg TNF-a blocking mAb (clone XT22), 2–4 mg of IFN-g blocking

mAb (clone XMG1.2), 500 mg of IL-12 and IL-23 p40 mAb (anti-p40,

clone CB17.8.20), or IL-23 p19 (anti-p19, clone MB490; B.S.M. and

D.J.C., unpublished data) i.p. together with anti-CD40 (clone

FGK45). Control mice received IgG2a (clone GL117), IgG1 (clone

27F11), or PBS together with FGK45.

The amount of lipopolysacharide (LPS, endotoxin) in all FGK45

antibody preparations was less than 1 endotoxin unit (limulus ame-

bocyte lysate assay) per dose and mouse. The antibody prepara-

tions that were used in the germ-free experiment were screened

for sterility and low endotoxin content.

FACS

The following antibodies were used for flow cytometry: anti-mouse

MHC class II I-Ad/I-Ed FITC (2G9), CD11c PE (HL3), CD40 FITC

(HM40-3), CD80 FITC (16-10A1), and CD86 FITC (GL1), as well as

isotype control antibodies for activation markers (all PharMingen).
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Stained cells were analyzed with BD FACS Calibur or FACS Sort and

CellQuest Software (Becton Dickinson, San Jose, CA).

Tissue Preparation

Cells of spleen and MLN were prepared essentially as described

previously (Malmstrom et al., 2001). Spleen and MLN were cut into

pieces and incubated for 25 min under agitation at 37�C in the pres-

ence of 1 mg/ml collagenase/dispase (Sigma, St. Louis, MO) and 100

U/ml DNase (Sigma) before 5 min of deaggregation in the presence

of 10 mM EDTA. The tissue was then passed through a 70 mm mem-

brane to generate single-cell suspensions.

Lamina propria (LP) lymphocytes were purified as described

(Powrie et al., 1994). In brief, colon tissue was cut into 0.5 cm pieces

and incubated in Ca- and Mg-free PBS containing 10% heat-inacti-

vated FCS (GIBCO-BRL) and 5 mM EDTA to release intraepithelial

lymphocytes. The remaining tissue was further digested with colla-

genase/dispase (100 U/ml; Sigma Chemical Co.), and the LP cells

were then layered on a 30%/40%/75% Percoll gradient (Amersham

Pharmacia Biotech). Cells were recovered after centrifugation

(600 3 g, 20 min) at the 40%/75% Percoll interface.

Histology

For H&E histology, tissue samples were fixed in 3.7% formalin. Par-

affin-embedded sections were cut and stained with haematoxylin

and eosin. 5 mm colon sections were analyzed. By adding the indi-

vidual parameter epithelial hyperplasia, goblet cell depletion, lamina

propria infiltrate, and epithelial cell damage (0 no pathology, 1 mild

changes, 2 intermediate, 3 severe changes), a colitis score (0–12)

was calculated. The degree of epithelial hyperplasia and the lamina

propria infiltrate were measured quantitatively.

For immunohistochemistry, tissue samples were snap frozen in

OTC medium (Sakura, Zoeterwude, The Netherlands). After section-

ing, the 6 mm slides were acetone fixed and processed including

blocking steps with 10% normal goat serum and blocking of endog-

enous peroxidase with H2O2 as well as glucose oxidase and sodium

azide. The primary monoclonal antibodies against mouse CD11c

(HL3 or N418) were detected with POD-labeled donkey anti-hamster

antibodies (Jackson ImmunoResearch, West Grove, PA) and the

tyramide amplification method with Cy5-tyramide (NEN, Boston,

MA). Cell nuclei in the tissue were counterstained with DAPI (Sigma).

Zeiss Axioplan microscopes were used including a Kodak Spot-2

digital camera system and image software (Diagnostic Instruments

Inc., MI).

Detection of Cytokines via a Cytometric Bead Array System

and ELISA

25 ml undiluted mouse serum samples were used for the parallel de-

tection of mouse IL-6, IL-10, MCP-1, IFN-g, TNF-a, and IL-12p70 in

mouse serum. The Luminex assay system (Luminex Corporation)

or the mouse inflammation bead array system (BD Biosciences,

UK) was used according to the manufacturer’s instructions and

analyzed with a FACSCalibur (Becton Dickinson).

Frozen intestinal tissue samples (pooled from 2–3 mice per group)

were homogenized in PBS containing a cocktail of protease inhibi-

tors (Roche) via a Polytron homogenizer. After centrifugation at

10,000 3 g to pellet debris, concentrations of cytokines in superna-

tants were measured with the cytometric bead assay (BD Biosci-

ences, UK). Cytokine levels were normalized to the total protein

levels present in each sample, which were measured by the Bradford

assay (Bio-Rad).

Pieces of colon or spleen were cultured in complete media for 24

hr. Supernatant was collected for IL-23p19p40 quantification by

ELISA (eBioscience, Insight Biotechnology Limited, UK). The sensi-

tivity limit of the IL-23 ELISA is 30 pg/ml.

Detection of Cytokines by Quantitative PCR

Total RNA from spleen or colon homogenates was isolated with the

RNAeasy mini kit (Quiagen). To analyze mRNA levels in myeloid cells

of mice after anti-CD40 or isotype treatment, spleen and colon were

removed immediately after sacrifice, digested, and FACS sorted for

CD11chigh and CD11clowCD11bhigh cells. RNA was prepared with

RNeasy Mini columns (Quiagen) and DNase digestion. After RNA

preparation, the cDNA was transcribed with a single reverse

transcriptase synthesis step with Superscript reagents (Invitrogen,
Paisley, UK). cDNA samples were stored at 220�C. Quantitative

PCR primers were designed with Primer Express software from

ABI (Applied Biosystems, Foster City, CA). Quantitative PCR was

performed with the Taqman Sequence detector 1.6.3 Abi software

(Applied Biosystems, UK). For all quantitative PCR amplification re-

actions, the following parameters were used. After an initial incuba-

tion for 2 min at 50�C and 10 min at 95�C, cycles of denaturation at

95�C for 15 s were followed by annealing and elongation for 2 min

at 60�C. 40 to 50 cycles were applied. As an alternative approach,

samples were detected with SYBR green incorporation into double-

stranded PCR products. The specificity of the reaction was tested by

product separation on gel electrophoresis or by melting curve anal-

ysis in case of SYBR green incorporation. The following reagents

were used for cDNA amplification: IL-23 p19 primer AGCGGGAC

ATATGAATCTACTAAGAGA, GTCCTAGTAGGGAGGTGTGAAGTTG,

and FAM/TAMRA-labeled probe CCAGTTCTGCTTGCAAAGGATCC

GC; IL-12 p35 primer TACTAGAGAGACTTCTTCCACAACAAGAG,

TCTGGTACATCTTCAAGTCCTCATAGA, and FAM/TAMRA-labeled

probe AGACGTCTTTGATGATGACCCTGTGCCT; IL-12 and 23 p40

primer GACCATCACTGTCAAAGAGTTTCTAGAT, AGGAAAGTCTT

GTTTTTGAAATTTTTTAA, and FAM/TAMRA-labeled probe CCACT

CACATCTGCTGCTCCACAAGAAG; HPRT primer GACCGGTCCC

GTCATGC, TCATAACCTGGTTCATCATCGC; VIC/TAMRA-labeled

probe ACCCGCAGTCCCAGCGTCGTC; IL17A primer GCTCCA

GAAGGCCCTCAG, CTTTCCCTCGCATTGACA; and VIC/TAMRA-

labeled probe ACCTCAACCGTTCCACGTCACCCTG.

For each individual sample, cytokine gene expression was com-

pared to expression of the housekeeping gene HPRT. Mean relative

expression of cytokine genes were calculated and differences

calculated using the 2-DC(t) method.

Statistics

The two-tailed Mann and Whitney U Test and Fisher exact test were

performed with GraphPad Prism 3.00 (GraphPad Software, San

Diego, CA). p values %0.05 were regarded as significant. Data are

presented as mean 6 1 SD.

Supplemental Data

Supplemental Data include three figures and Supplemental Experi-

mental Procedures and can be found with this article online at

http://www.immunity.com/cgi/content/full/25/2/309/DC1/.
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