Endothelial Cell-Specific NF-κB Inhibition Protects Mice from Atherosclerosis

Ralph Gareus,1,5,7 Elena Kotsaki,2,5 Sofía Xanthoulea,3 Ingeborg van der Made,3 Marion J.J. Gijbels,3,4 Rozina Kardakaris,1 Apostolos Polykratis,1 George Kollias,2 Menno P.J. de Winther,3,6 and Manolis Pasparakis1,6,*

1Institute of Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
2Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Vari 166 72, Greece
3Department of Molecular Genetics
4Department of Pathology
Cardiovascular Research Institute Maastricht Universiteitssingel 50, 6229ER Maastricht, The Netherlands
5These authors contributed equally to this work
6These authors contributed equally to this work
7Present address: TaconicArtemis GmbH, Neurather Ring 1, 51063 Cologne, Germany
*Correspondence: pasparakis@uni-koeln.de
DOI 10.1016/j.cmet.2008.08.016

SUMMARY

Atherosclerosis is a progressive disorder of the arterial wall and the underlying cause of cardiovascular diseases such as heart attack and stroke. Today, atherosclerosis is recognized as a complex disease with a strong inflammatory component. The nuclear factor-κB (NF-κB) signaling pathway regulates inflammatory responses and has been implicated in atherosclerosis. Here, we addressed the function of NF-κB signaling in vascular endothelial cells in the pathogenesis of atherosclerosis in vivo. Endothelium-restricted inhibition of NF-κB activation, achieved by ablation of NEMO/IKKγ or expression of dominant-negative IκBα specifically in endothelial cells, resulted in strongly reduced atherosclerotic plaque formation in ApoE−/− mice fed with a cholesterol-rich diet. Inhibition of NF-κB abrogated adhesion molecule induction in endothelial cells, impaired macrophage recruitment to atherosclerotic plaques, and reduced expression of cytokines and chemokines in the aorta. Thus, endothelial NF-κB signaling orchestrates proinflammatory gene expression at the arterial wall and promotes the pathogenesis of atherosclerosis.

INTRODUCTION

Atherosclerosis is the major cause of death in westernized societies, being the underlying cause for cardiovascular diseases such as heart attack and stroke. It is a progressive disease of the large arteries, integrating a wide range of genetic and environmental risk factors. Atherosclerosis is recognized as a complex inflammatory disease with involvement of many different cell types. Atherosclerotic lesions are characterized by the accumulation of lipid particles and immune cells in the subendothelial space, resulting in the narrowing of the arterial lumen. Endothelial cell activation upon exposure to oxidized lipids and proinflammatory stimuli is believed to play an important role in the initiation and progression of atherosclerosis. Activated endothelial cells express chemotactic factors and adhesion molecules, attracting monocytes to migrate into the subendothelial space, where they differentiate into macrophages and phagocytose lipids, eventually becoming lipid-laden foam cells (Hansson, 2005; Hansson and Libby, 2006). Besides macrophages, activated T lymphocytes also accumulate in atheromatous plaques (Benagiano et al., 2003; de Boer et al., 1999; Watanabe et al., 1995), where they are believed to have proatherogenic functions (Zhou, 2003).

The NF-κB signaling pathway has been implicated in the pathogenesis of atherosclerosis (de Winther et al., 2005). NF-κB is the collective name for a family of transcription factors with five members: c-Rel, relB, p65 (relA), p105/p50, and p100/p52. NF-κB dimers are kept inactive by association with inhibitory proteins, the inhibitors of NF-κB (IκBs). Upon cell stimulation by proinflammatory signals, the IκB kinase (IKK) phosphorylates IκB proteins on specific serine residues, leading to their ubiquitination and consecutive proteasomal degradation. The released NF-κB dimers accumulate in the nucleus, where they activate the expression of many genes, including cytokines, chemokines, adhesion molecules, and antiapoptotic and antioxidant proteins. The IKK complex consists of two kinases called IKK1 (or IKKα) and IKK2 (or IKKβ) and a regulatory subunit named NF-κB essential modulator (NEMO, or IKKγ). NEMO is essential for IKK-mediated IκB phosphorylation and activation of the canonical NF-κB signaling pathway (Schmidt-Supprian et al., 2000).

NF-κB has been proposed to be an integrator of many processes that affect the formation of atherosclerotic plaques (de Winther et al., 2005). A number of factors implicated in the development of atherosclerosis, such as hemodynamic forces (Hajra et al., 2000), integrin/matrix signaling (Orr et al., 2005), cytokines, bacterial and viral infections (Molestina et al., 2000), oxidized lipids (Liao et al., 1993), angiotensin II (Hernandez-Presa et al., 1997), and advanced glycation end products (Rodriguez-Ayala et al., 2005), have all been shown to activate NF-κB. Furthermore, NF-κB regulates the expression of many genes involved in the initiation and progression of atherosclerotic lesions,
including cytokines (e.g., TNF, IL-1, IL-6), adhesion molecules (VCAM-1, ICAM-1, P- and E-selectin), and chemokines (e.g., MCP-1) (see de Winther et al., 2005). Activated (nuclear) NF-κB was detected in macrophages, endothelial cells, and smooth muscle cells in atherosclerotic regions in humans and animal models (Brand et al., 1996; Hajra et al., 2000; Wilson et al., 2002).

Despite overwhelming suggestive evidence implicating NF-κB in atheromatous plaque formation, the endothelial-specific role of NF-κB in atherosclerosis remains elusive due to the lack of in vivo experimental validation. Here, we addressed in vivo the role of NF-κB signaling in vascular endothelial cells in the development of atherosclerosis using genetic mouse models. We show that endothelial-specific NF-κB inhibition, achieved by the conditional ablation of NEMO or the expression of a dominant-negative IkBα superrepressor (DNIkBα), inhibits the development of atheromatous plaques in Apolipoprotein E (ApoE)-deficient mice, a well-established mouse model of atherosclerosis.

RESULTS

ApoE<−/− Mice with Endothelial-Specific NEMO Ablation

To study in vivo the pathogenesis of atherosclerosis, we employed ApoE-deficient mice, which develop spontaneously atherosclerotic plaques due to elevated levels of cholesterol in the circulation, a pathology that is further aggravated upon feeding with a cholesterol-rich western-type diet (Zhang et al., 1992). To inhibit NF-κB in endothelial cells, we generated mice with endothelial-specific ablation of NEMO (NEMOEC-KO) by crossing mice carrying loxP-flanked Nemo alleles (Schmidt-Supprian et al., 2000) with Tie1-Cre transgens expressing Cre recombinase under the control of the endothelial-specific Tie1 promoter (Gustafsson et al., 2001). NEMOEC-KO mice were bred into the genetic background (NEMOEC-KO/ApoE<−/−>mice). ApoE<−/−> littermates carrying loxP-flanked Nemo alleles but lacking Cre recombinase expression were used as controls in subsequent experiments and are referred to here as ApoE<−/−>. To assess whether NEMO ablation inhibits NF-κB-induced gene transcription in endothelial cells, we examined expression of VCAM-1, a known NF-κB-dependent gene (Neish et al., 1992), in aortas from NEMOEC-KO/ApoE<−/−> and ApoE<−/−> mice 3 hr after injection of PBS or bacterial lipopolysaccharide (LPS). LPS induced strong upregulation of VCAM-1 in endothelial cells of aortas from ApoE<−/−> mice, which was effectively attenuated in NEMOEC-KO/ApoE<−/−> mice (Figure 1A), indicating efficient inhibition of NF-κB-dependent gene transcription in the endothelium of these animals. Southern blot analysis of DNA isolated from splenocytes, thymocytes, or lymph node cells from NEMOEC-KO/ApoE<−/−> mice showed no deletion of the Nemo gene (Figure 1B), indicating that the Tie1Cre transgene did not affect NEMO expression in immune cells. PCR analysis showed deletion of the NEMO allele in aortas from NEMOEC-KO/ApoE<−/−> mice (see Figure 1G).

Reduced Atherosclerosis in NEMOEC-KO/ApoE<−/−> Mice

In order to study the effect of endothelium-specific NEMO ablation on the development of atherosclerosis, we placed groups of male NEMOEC-KO/ApoE<−/−> and ApoE<−/−> littermates on a cholesterol-rich “western” diet for 10 weeks, starting from 8 weeks of age. Analysis of the levels of cholesterol and triglycerides and of lipoprotein profiles in the serum did not reveal considerable differences between NEMOEC-KO and NEMOEC-KO/ApoE<−/−> mice (Figure 1C and Figure S1 available online). After 10 weeks on western diet, the mice were sacrificed, and atherosclerotic lesion development was assessed at the aortic sinus by histological analysis of consecutive sections followed by cross-sectional plaque area quantification. This analysis revealed a statistically significant 30% reduction in lesion size in the group of NEMOEC-KO/ApoE<−/−> compared to ApoE<−/−> controls (Figure 1E), showing that NEMO ablation in endothelial cells inhibits the accumulation of T cells in atherosclerotic lesions. To assess the progression of atherosclerosis, lesions were grouped into three categories as described earlier (van Vlijmen et al., 1994): early lesions, characterized by fatty streaks containing only foam cells; moderate lesions showing an additional collagenous cap; and advanced lesions with involvement of the media and increased collagen content. ApoE<−/−> mice had more advanced (51%) and fewer early (10%) lesions, while NEMOEC-KO/ApoE<−/−> mice showed 30% advanced and 25% early lesions (Figure 1F), indicating that endothelial-specific NEMO ablation inhibits the progression of atherosclerotic lesions to more advanced stages.

While the results obtained from the analysis of NEMOEC-KO/ApoE<−/−> mice clearly showed that NEMO deletion in endothelial cells reduces atherosclerosis, individual mice displayed a high level of variability, prompting us to investigate whether the efficiency of NEMO ablation might vary from mouse to mouse. Indeed, PCR analysis on DNA isolated from aortas revealed that several NEMOEC-KO/ApoE<−/−> mice did not show detectable levels of the deleted NEMO allele (Figure 1G), indicating that the Tie1-Cre transgene showed variable expression in different animals. This finding implied that the results obtained using this mouse model were likely to underestimate the impact of endothelial NF-κB inhibition on atherogenesis and prompted us to develop and study additional mouse models.

Inducible Endothelial NEMO Ablation Reduces Atherosclerosis

To further investigate the role of endothelial NF-κB in atherosclerosis, we developed a second mouse model where endothelial-specific NEMO ablation was achieved by using a Tie2-CreER^{T2} transgene expressing a tamoxifen-inducible Cre-ER fusion protein under the control of the Tie2 promoter (Forde et al., 2002). These mice were also bred into the ApoE<−/−> genetic background (NEMO^{OEK}/ApoE<−/−>). To induce Cre-mediated excision of the loxP-flanked Nemo allele in endothelial cells, we fed groups of 6-week-old NEMO^{OEK}/ApoE<−/−> and their ApoE<−/−> littermates that did not carry the Tie2CreER^{T2} transgene with a diet containing tamoxifen (400 mg/kg tamoxifen citrate, 5% sucrose in phytoestrogen-free chow) for 5 consecutive weeks (Kiermayer et al., 2007) followed by 10 weeks on western diet. PCR analysis of DNA isolated from aortas taken at the end of...
the experiment could detect the presence of the deleted Nemo allele in NEMOEC-iKO/ApoE+/− mice, suggesting that Cre-mediated recombination took place in the endothelium (Figure 2A). NEMOEC-iKO/ApoE+/− mice showed similar levels of cholesterol (Figure 2B), triglycerides, and lipid profiles (Figures S1B and S1C) and also body weight (Figure S3A) compared to their ApoE−/− littermates after 10 weeks on western diet. At the end of the 10 week period, histological assessment of atherosclerosis at the aortic sinus revealed that both male and female NEMOEC-iKO/ApoE+/− mice developed smaller atherosclerotic plaques when compared to ApoE−/− littermates (Figure 2C). Quantification of this effect showed that the atherosclerotic lesion area at the aortic sinus was significantly reduced by 33% in the male and by 47% in the female group of NEMOEC-iKO/ApoE+/− mice and their ApoE−/− littermates (Figures 2C and 2D). Since both the NEMOEC-iKO/ApoE+/− mice and their ApoE−/− littermates were fed with tamoxifen-containing food for 5 weeks before starting the cholesterol-rich diet, the differences observed between the two groups could not be attributed to an unspecific effect of tamoxifen but are, rather, caused by the ablation of Nemo in endothelial cells. Taken together, the results obtained using inducible Nemo ablation in NEMOEC-iKO/ApoE+/− mice confirmed the data from the first experiments using NEMOEC-KO(ApoE+/−) animals and showed that inhibition of NF-κB signaling in endothelial cells decreases atherosclerotic lesion size in vivo.

ApoE+/− Mice Expressing Endothelial DNixBz

Since Nemo has been reported to exert functions independent of the NF-κB pathway (Yamamoto et al., 2006), to unequivocally demonstrate the role of endothelial NF-κB in atherosclerosis, we chose to use a third mouse model where NF-κB activity was specifically inhibited in the vascular endothelium of transgenic mice by the expression of a degradation-resistant, dominant-negative IκBa (DNixBz) under the control of the Tie2 promoter (Schlaeger et al., 1997). Tie2DNixBz mice were backcrossed into the ApoE−/− genetic background (Tie2DNixBz/ApoE−/−) to study the effect of endothelial DNixBz expression in atherosclerosis.

We first assessed the expression of DNixBz in the Tie2DNixBz/ApoE−/− mice. Immunoblot analysis with an antibody recognizing the HA tag fused to the DNixBz revealed expression in lung, heart, and liver tissue from Tie2DNixBz/ApoE−/− mice (Figure 3A). To confirm the endothelial cell specificity of the DNixBz transgene and assess its expression levels in comparison to endogenous IκBa, we prepared primary cells from dissociated lung tissue and used magnetic cell sorting to enrich the CD31+/endothelial cell fraction. Immunoblot analysis of protein lysates from the CD31+, CD31−, and total cell fractions showed that expression of the DNixBz transgene was restricted to CD31+ cells, where it was expressed at higher levels compared to endogenous IκBa (Figure 3B). In addition, double immunostaining with antibodies recognizing the endothelial cell-specific marker CD31 (PECAM1) and anti-HA on liver and lung sections confirmed endothelial cell-restricted transgene expression (Figure 3C). Furthermore, immunostaining of aortal sections and whole-mount aortal biopsies revealed that DNixBz was expressed specifically in the endothelium, covering nearly completely the endothelial lining of the vessel (Figure 3D). To confirm that expression of DNixBz inhibits NF-κB-dependent gene transcription in the endothelium, we analyzed the expression of the adhesion molecule VCAM-1 in the aortas of Tie2DNixBz/ApoE−/− mice and ApoE−/− littermates 3 hr after injection of bacterial lipopolysaccharide (LPS). LPS administration resulted in upregulation of endothelial VCAM-1 expression in aortas from ApoE−/− mice, but not from Tie2DNixBz/ApoE−/− mice (Figure 3E), showing that the Tie2DNixBz transgene inhibits proinflammatory signal-induced, NF-κB-dependent gene expression in endothelial cells.

Since immune cells and, particularly, macrophages are also important for the development of atherosclerosis, we examined whether the Tie2DNixBz transgene shows aberrant expression in these cells. As shown in Figure S2A, the Tie2DNixBz transgene was expressed in aorta, liver, and lung, but not in bone marrow-derived macrophages (BMDM) from Tie2DNixBz/ApoE−/− mice. Moreover, BMDM from Tie2DNixBz/ApoE−/− mice showed normal NF-κB activation upon TNF stimulation (Figures S2B and S2C).

Endothelial DNixBz Protects ApoE+/− Mice from Atherosclerosis

To assess the effect of endothelial-specific DNixBz expression in the development of atherosclerosis, we placed groups of Tie2DNixBz/ApoE−/− and ApoE−/− littermates on western diet for 10 weeks. Tie2DNixBz/ApoE−/− and ApoE−/− mice showed similar levels of cholesterol (Figure 4A) and triglycerides, as well as lipid profiles (Figures S1D and S1E), and also reached similar body weight (see Figure S3B), showing that expression of the Tie2DNixBz transgene did not affect lipid levels. At the end of the 10 week period, atherosclerotic plaque development was assessed by en face analysis of whole aortas and...
Figure 2. Reduction of Atherosclerotic Lesion Size in NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} Mice after Tamoxifen Treatment

(A) PCR on DNA isolated from aortas to prove deletion of the NEMO gene in NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} mice. DNA was prepared from aortas of mice after 5 weeks of tamoxifen treatment and 10 weeks of high-cholesterol diet. The 642 bp band indicating deletion of the NEMO allele is only visible in NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} mice, but not in Cre-negative littermates. For a scheme of the location of the PCR primers on the NEMO locus, see Figure 1G.

(B) Graph showing fasting serum cholesterol levels of NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} males, n = 5; NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} females, n = 6; ApoE^{-/-} males, n = 8; ApoE^{-/-} females, n = 5. Error bars represent SEM.

(C) Aortal cross-sections at the height of the aortic sinus of NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} mice. Lesions are marked by arrows. Scale bar, 0.5 mm.

(D) Graphs showing quantification of atherosclerotic lesion size at the aortic sinus in NEMO<sup>EC-<i>ko</i>/ApoE^{-/-} mice.
histological lesion quantification at the aortic sinus, while gene expression analysis was performed on RNA isolated from aortic arches.

En face analysis of atheromatous plaques by Sudan IV staining showed a dramatic reduction of atherosclerosis in the aortic arch area and in the descending aorta of Tie2DNIxBz/ApoE^{−/−} mice compared to ApoE^{−/−} littermates (Figure 4B). Quantification of atherosclerotic lesions relative to the total aorta area revealed a highly significant reduction of lesions in Tie2DNIxBz/ApoE^{−/−} mice (average 1% lesion area) compared to ApoE^{−/−} littermates (average 12% lesion area) (Figure 4C). Histological assessment of atherosclerotic lesions at the aortic sinus confirmed the results of the *en face* analysis, revealing a strong reduction of plaque formation in Tie2DNIxBz/ApoE^{−/−} mice compared to ApoE^{−/−} littermates (Figure 4D). Quantification of lesions at the aortic sinus revealed a highly significant 60% decrease of atherosclerotic plaque area in both male and female groups of Tie2DNIxBz/ApoE^{−/−} mice compared to ApoE^{−/−} littermates (Figure 4E). To further characterize the severity and progression of atherosclerosis, lesions were graded as described earlier for NEMO^{EC-KO} mice (Figure 4F). In contrast, Tie2DNIxBz/ApoE^{−/−} mice had fewer advanced lesions (25% and 17% for males and females, respectively) and more early lesions (53% and 41%), while 22% (males) and 42% (females) of the lesions were classified as moderate (Figure 4F). Together, these results demonstrate that inhibition of NF-κB signaling in endothelial cells by expression of DNIxBz reduces atherosclerotic lesion development in vivo.

Endothelial DNIxBα Impedes Inflammatory Mediator Expression in the Aorta

Expression of cytokines, chemokines, and adhesion molecules by the vascular endothelium is thought to contribute to the formation of atherosclerotic lesions (Lusis, 2000). Since NF-κB is known to regulate the transcription of many of these molecules (Kempe et al., 2005), we reasoned that DNIxBz expression might prevent atherosclerotic plaque development by inhibiting NF-κB-dependent proinflammatory gene transcription in endothelial cells. Thus, we tested by quantitative real-time PCR (qRT-PCR) the expression of a panel of cytokines, chemokines, and adhesion molecules on RNA isolated from the aortic arch of Tie2DNIxBz/ApoE^{−/−} and ApoE^{−/−} littermates after 10 weeks on western diet. mRNA levels of ICAM-1 and VCAM-1, two endothelial adhesion molecules that are known to be regulated by NF-κB (Zhou et al., 2007), are important for the development of atherosclerosis (Cybulsky et al., 2001; Davies et al., 1993), were strongly reduced in the aortas of Tie2DNIxBz/ApoE^{−/−} mice when compared to ApoE^{−/−} animals (Figure 5A). Immunostaining of sections from aortas with VCAM-1-specific antibodies confirmed the reduced expression of VCAM-1 in the endothelium of lesions in Tie2DNIxBz/ApoE^{−/−} mice (Figure 5B) and NEMO^{EC-KO/ApoE^{−/−}} mice (Figure S4).

Expression of IL-6, IL-1β, and TNF was reduced in aortas from Tie2DNIxBz/ApoE^{−/−} mice compared to ApoE^{−/−} littermates, while IL-10 and IL-18 were expressed at similar levels in both groups (Figure 5A). Of the chemokines tested, monocyte chemoattractant proteins MCP-1 and MCP-3, Gro/KC, MIP-1α, MIP-2α, and RANTES were expressed at significantly lower levels in Tie2DNIxBz/ApoE^{−/−} mice than in the ApoE^{−/−} group (Figure 5A). Thus, inhibition of NF-κB signaling in endothelial cells led to reduced expression of many known proinflammatory mediators and cell adhesion molecules in sites prone to atherosclerotic lesion development.

Endothelial DNIxBα Impairs Macrophage Recruitment into Plaques

Chemoattractant proteins and adhesion molecules expressed by the endothelium are critical for the recruitment of monocytes to atherosclerotic lesions (Boisvert et al., 2006; Reape and Groot, 1999; Shyy et al., 1993). In particular, VCAM-1 is crucial for the extravasation of monocytes into regions of atherosclerotic lesion development (Cybulsky et al., 2001). To experimentally address whether the reduced expression of proinflammatory mediators in the aortas of Tie2DNIxBz/ApoE^{−/−} mice caused impaired recruitment of monocytes into the developing plaques, we investigated the migration and homing of macrophages into atherosclerotic plaques of these mice. Thioglycollate-elicited macrophages were isolated from the peritoneal cavity of syngeneic ApoE^{−/−} mice, labeled ex vivo with the fluorescent dye Calcein-AM, and transferred by tail-vein injection into either ApoE^{−/−} or Tie2DNIxBz/ApoE^{−/−} mice, which had been fed western diet for 8 weeks. At 48 hr later, the presence of Calcein-AM-labeled macrophages in atherosclerotic lesions at the aortic sinus was analyzed histologically and quantified. As shown in Figure 5C, homing of macrophages into atherosclerotic lesions was significantly reduced in Tie2DNIxBz/ApoE^{−/−} mice compared to ApoE^{−/−} controls. Therefore, inhibition of endothelial NF-κB impairs the recruitment of macrophages into atherosclerotic lesions in vivo.

DISCUSSION

Our results presented here show that endothelial cell-specific inhibition of NF-κB resulted in reduced development of atherosclerosis in vivo in the well-established *ApoE^{−/−}* mouse model. Protection from atherosclerosis correlated with reduced expression of proinflammatory cytokines, chemokines, and adhesion molecules in the aortas of mice fed a cholesterol-rich diet. NF-κB inhibition in the endothelium also interfered with the recruitment of monocytes into atherosclerotic plaques. Thus, NF-κB inhibition in endothelial cells protects from the development of atherosclerosis by preventing the expression of proinflammatory mediators and the recruitment of immune cells into the subendothelial space of the arterial wall.

The atheroprotective role of NF-κB inhibition was observed in three different mouse models, employing either NEMO ablation to interfere with IKK activation or transgenic expression of degradation-resistant DNIxB to block nuclear translocation of NF-κB. While all three models showed a protective effect for NF-κB inhibition, overexpression of DNIxB resulted in a more dramatic, nearly complete inhibition of atherosclerotic plaque development. This is most likely due to the fact that Cre-mediated recombination of the loxP-flanked Nemo allele was not achieved in all endothelial cells, resulting in incomplete ablation of NEMO in the endothelial lining of the arterial wall. However, at this stage, we cannot exclude the possibility that overexpression...
Figure 3. Characterization of Tie2DNiκBα/ApoE−/− Mice

(A) Immunoblot analysis of aorta, heart, and liver lysates of ApoE−/− and Tie2DNiκBα/ApoE−/− mice probed with an anti-HA antibody recognizing the HA-tagged DNiκBα transgene.

(B) (Upper panel) FACS analysis of lung cell suspensions with anti-CD31 antibodies shows that 88% of the MACS–enriched cells are positive for CD31 (left), while only 23% of total lung cells express this marker (right). (Lower panel) Immunoblot of protein lysates of the different cell fractions probed with an antibody against iκBα.

(C) Immunofluorescence imaging of CD31, HA, and DAPI staining of liver and lung sections from ApoE−/−, Tie2DNiκBα/ApoE−/−, ApoE−/−, and Tie2DNiκBα/ApoE−/− mice.

(D) Representative images of immunohistochemical staining of atherosclerotic lesions in ApoE−/− and Tie2DNiκBα/ApoE−/− mice.

(E) Relative fluorescence intensity of LPS-induced inflammation in ApoE−/− and Tie2DNiκBα/ApoE−/− mice.

of DNlvBz protects from atherosclerosis by interfering with additional, NEMO-independent pathways of NF-κB activation in endothelial cells. Moreover, the fact that inducible NEMO ablation at 6 weeks of age was effective in reducing the severity of atherosclerosis suggests that the protective function of NF-κB inhibition was not due to developmental effects but, rather, caused by an impairment of lesion initiation and progression during the period of feeding with the high-cholesterol diet.

We showed previously that myeloid cell-specific targeting of IKK2 resulted in increased atherosclerosis with greater numbers of apoptotic cells within plaques (Kanters et al., 2003). This apparently paradoxical finding might be explained by the increased sensitivity of IKK2-deficient macrophages to apoptosis, as increased numbers of dying macrophages within lesions are likely to promote inflammation and worsen atherosclerosis. In addition, hematopoietic-specific p50 deficiency led to reduced atherosclerosis but more inflamed lesions, suggesting that p50 may have a dual role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.

Multiple upstream pathways might be responsible for activating NF-κB in endothelial cells, promoting the development of atherosclerosis. Previous studies showed that inhibition of MyD88-dependent signaling downstream of Toll-like receptors (TLR) 2 and 4 protected mice from the development of atherosclerosis (Bjorkbacka et al., 2004; Michelsen et al., 2004). CD14 deficiency did not have a protective effect, suggesting that p50 may play a role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.

Multiple upstream pathways might be responsible for activating NF-κB in endothelial cells, promoting the development of atherosclerosis. Previous studies showed that inhibition of MyD88-dependent signaling downstream of Toll-like receptors (TLR) 2 and 4 protected mice from the development of atherosclerosis (Bjorkbacka et al., 2004; Michelsen et al., 2004). CD14 deficiency did not have a protective effect, suggesting that p50 may play a role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.

Multiple upstream pathways might be responsible for activating NF-κB in endothelial cells, promoting the development of atherosclerosis. Previous studies showed that inhibition of MyD88-dependent signaling downstream of Toll-like receptors (TLR) 2 and 4 protected mice from the development of atherosclerosis (Bjorkbacka et al., 2004; Michelsen et al., 2004). CD14 deficiency did not have a protective effect, suggesting that p50 may play a role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.

Multiple upstream pathways might be responsible for activating NF-κB in endothelial cells, promoting the development of atherosclerosis. Previous studies showed that inhibition of MyD88-dependent signaling downstream of Toll-like receptors (TLR) 2 and 4 protected mice from the development of atherosclerosis (Bjorkbacka et al., 2004; Michelsen et al., 2004). CD14 deficiency did not have a protective effect, suggesting that p50 may play a role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.

Multiple upstream pathways might be responsible for activating NF-κB in endothelial cells, promoting the development of atherosclerosis. Previous studies showed that inhibition of MyD88-dependent signaling downstream of Toll-like receptors (TLR) 2 and 4 protected mice from the development of atherosclerosis (Bjorkbacka et al., 2004; Michelsen et al., 2004). CD14 deficiency did not have a protective effect, suggesting that p50 may play a role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.

Multiple upstream pathways might be responsible for activating NF-κB in endothelial cells, promoting the development of atherosclerosis. Previous studies showed that inhibition of MyD88-dependent signaling downstream of Toll-like receptors (TLR) 2 and 4 protected mice from the development of atherosclerosis (Bjorkbacka et al., 2004; Michelsen et al., 2004). CD14 deficiency did not have a protective effect, suggesting that p50 may play a role in plaque initiation and progression (Kanters et al., 2004). Moreover, systemic administration of dehydroxy-methylepoxyquinomicin (DHMEQ), a substance shown to inhibit NF-κB, reduced atherosclerosis in ApoE−/− mice (Chiba et al., 2006). These results suggest that the function of NF-κB in atherosclerosis is complex, and the results obtained by interfering with NF-κB activity may depend on the cell type targeted but also on the level of inhibition achieved.
were resuspended at 2 × 10^6/ml in RPMI Glutamax (Invitrogen) supplemented with 10% FCS and incubated with 1 μg/ml Calcein-AM (Invitrogen) at 37°C for 30 min. After three washes with PBS, cells were resuspended in 10% FCS in PBS, and 200 μl of the cell suspension was injected i.v. into mice that had been on high-fat diet for 8 weeks. At 48 hr later, the mice were sacrificed and perfused with PBS, and the hearts were frozen in OCT. Cryosections (8 μm) were collected over 0.5 mm starting at the aortic sinus. Fluorescent macrophages infiltrating the atherosclerotic lesions were counted, and their number was divided by the lesion area.

Quantitative Real-Time PCR
RNA was isolated from aortas by using Trizol-reagent (Invitrogen) and Rneasy columns (QiAGEN). RNA (1 μg) was used for reverse transcription with Super-Script II or SuperScript III reverse transcriptase (Invitrogen). The reaction was topped up to 200 μl with water, and 2 μl were used for quantitative real-time PCR reaction either with the Dynamo SYBR-green kit (Finnzymes) or with the TaqMan Realtime PCR Kit from Applied Biosystems. Standardization was done with primers for ubiquitin (Dynamo) or GAPDH (TaqMan). IL-6, GAPDH, VCAM-1, ICAM-1, IL-1b, RANTES, MCP-1, MIP-1α and MIP-2α, IP-10, and TNF were quantified with the respective TaqMan probes from Applied Biosystems; the other primer sequences are available upon request.

En face Analysis of Atherosclerosis
Sudan IV staining and en face analysis of atherosclerotic lesions were performed as described previously (Holman et al., 1958). Plaque areas were quantified with Adobe Photoshop.

Histology of Plaques and Lesion Size
Consecutive 7 μm sections of the heart in the atriocentric valve region were collected and stained with toluidine blue, as described previously (Kanters et al., 2003). For morphometric analysis, lesion size was measured on four consecutive sections in 42 μm intervals using Adobe Photoshop.

Statistical Analysis
All statistical analyses were performed using the Prism program (GraphPad Software Inc., San Diego, CA). Data were analyzed for normality using the Kolmogorov-Smirnov test. The null hypothesis was tested using Welch’s corrected t test.

SUPPLEMENTAL DATA
The Supplemental Data include four figures and can be found with this article online at http://www.cellmetabolism.org/supplemental/S1550-4131(08)00283-0.

ACKNOWLEDGMENTS
We thank T. Tropartz, J. Pfeiffer, and C. Uthoff-Hachenberg for excellent technical assistance and E. Pure for providing the protocol to quantify macrophage homing into atherosclerotic lesions. M.P.J.d.W. is an Established Investigator of the Netherlands Heart Foundation (2007T007). This work was supported by grants from ZonMW (Venl 016-056-124 to S.X. and Vidi 016-066-329 to M.P.J.d.W.), the Netherlands Heart Foundation (2005B175), the European Vascular Genomics Network (EVGN) to M.P.J.d.W., European Union Projects IMDEMI (MRTN-CT-2004-005632) to M.P. and MUGEN NoE (MUGEN LSHG-CT-2005-005203) to G.K. and M.P., by a grant from the Center for Molecular Medicine Cologne (CMMC) to M.P. and by a grant from the Novartis Foundation for Therapeutic Research to M.P.

REFERENCES

Figure 4. Reduction of Atherosclerosis in Tie2DNlx:Bα/Δ/Δ Mice (A) Graph showing fasting serum cholesterol levels of female (left) and male (right) ApoE−/− mice and Tie2DNlx:Bα/Δ/Δ mice after 10 weeks of western diet. Error bars indicate SEM. n = 19 (female) and 11 (male) for ApoE−/− and 12 (female) and 13 (male) for Tie2DNlx:Bα/Δ/Δ.

B) Aortas from female female ApoE−/− and male mice were stained with Sudan IV. Representative aortas are shown for each genotype.

C) Graph showing the quantification of plaque area in aortas stained with Sudan IV for en face analysis.

D) Cross-sections at the aortic sinus stained with toluidine blue. Representative sections are shown for each genotype. Arrows indicate atherosclerotic lesions.

E) Graphs showing the quantification of atherosclerotic lesion size at the aortic sinus.

F) Classification of lesion severity in ApoE−/− and Tie2DNlx:Bα/Δ/Δ mice.
Figure 5. Reduced Expression of Adhesion Molecules, Proinflammatory Cytokines, and Chemokines Leads to Impaired Macrophage Recruitment into Atherosclerotic Lesions of Tie2DNI:Bα/ApoE−/− Mice

(A) Relative mRNA levels of adhesion molecules (left), proinflammatory cytokines (middle), and chemokines (right) of aortal arches from ApoE−/− and Tie2DNI:Bα/ApoE−/− mice after 10 weeks on western diet. ApoE−/−, n = 7; Tie2DNI:Bα/ApoE−/−, n = 10. Error bars represent SEM.

(B) Immunohistochemical staining of VCAM-1 expression on sections from aortal areas containing atherosclerotic lesions shows strong endothelial VCAM-1 staining in ApoE−/−, but not in Tie2DNI:Bα/ApoE−/− mice (red staining, arrows).

(C) Homing of ex vivo labeled macrophages into atherosclerotic lesions 48 hr after injection. (Upper panel) Fluorescence micrograph of atherosclerotic plaque (dashed line) with immune cell infiltrates. Intravenously injected Calcein-AM-labeled macrophages are shown in green (left); nuclei, in blue (middle); and overlay, on the right. Inset shows magnification of boxed area. (Lower panel) Graph showing quantification of macrophage homing into lesions of ApoE−/− and Tie2DNI:Bα/ApoE−/− mice.

